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Abstract.

The quantum phase formalism, suggested earlier ( Abarenov A.V. and
Stolyarov A.V. J.Phys.B, (1999) 23 2419-26), for the solution of the

one-dimensional (1D) eigenvalue problem, is applied for eigenfunctions

and its overlap integrals . The guantam phase and amplitude functions

of the offered method is found to concide with semiclassical ones

under standart semiclassical conditions (p’'« p). It made possible

to obtain the ciosed form of wavefunctions and energies, which is
equivalent to those of 1’ order W.K.B. expansion. The method is the
most efficient for strongly oscillating eigenfunctions, i.e. in the
high-energy limit.
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1. Introduction.

Much effort has been devoted +o0 searching for +the most
efficient and convinient methods of solution of one-dimensional (1iD)
sigenvalue problem. However, one can not usually take the advantages
of these methods for solving eigenfunction problem straight off.
Moreover, the majority of these ones have significant drawback =—
their accuracy.is rapidly decreased for the highly oscillatory eigen-
functions, i.e. as the vibrational guantum number v for bound stétes
and energy E for continuum states increases.

The well-known direct step-by-sier numerical integration
(so-called “"shooting”) method is‘widely used for both eigenvalues, as
eigenfunctions of 1D Schrodinger equation . Obviously, its accuracy
is defined by the particular numerical scheme applied for integration.
The ordinary or renormalized Numerov [11] algorithm is often employved
tc integraie the 1D Schrodinger equation, since this procedure is
efficient, accurate and numerically stability for both one-minimum
and double-minimum molecular potentials [27.

It is easy to show that for Numerov algorithm the relative
error 1 of wavefunction inside the classically allowed region at high

v grows as a third power level energsy E {[331. Moreover, the value v

nozet : . . : ;
inside the classicaly allowed regions in any

grows as E
finite-difference scheme of order n. This dependence seems 1o be not
appropriate for states with highly oscillatory eigenfunctions.

To overcome this problem, we apply the phase formalism, suggested
earliier for searching eigenvalues [4], to direct numerical integration

1D Schrodinger eauation.

2. Modified phase method for 1D eigenfunctions
and its semiclassical limit.
Let us rewrite the 1D Schrodinger equation using a new variables

y = g sin{p} (la)
.

y' = a g cos{w}, (1b)
where a - is some function and prime indicates the first-order diffe-
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rention in radial coordinate r. So we obtain differential equations
for vhase ¢ and amplitude g :

o = a—sin{{a—(E—U}/a}sin('p)-{a’/e.}cos{q‘)) (2a)

g'/g = cos{{a—(E—U)/a}sin(@)-{a'/a}cos(@) , (2%}
where both energy E and potential U{r) are expressed in Aston unit.
Now, a{r) is supposed to be equal to classical momentum p{r) in the
classical accessiable region: a=p(r)=16-Uﬁ9. Then, eqs.(2) for

vhase ¢p and amplitude gp take the fcollowing form:

49; = p + (p’'/2p} sin(2¢p) (3a)
g;/gp= -{p’ /2p}( 1+cos(2¢zp) ) (3b}

Further, upon the substitution #» @ ¢ _+ d and g =g etﬁr
P s¢ P P sC
where psc:fpdr+po and gsc=C/1 p are first-order semiclassical phase
and amplitude. respectively [5], we arrive the following eguations for

the quantum correction functions db and ﬁp:

d;= (p'/2p) sin(2¢) {4a)
/3;= (p'/2p} cos(2¢) (4b)

S50 the total wavefunction y is:

y =C/¥ p e—pp sin{ jbdr + db + @o} (5)
As.it is appears from eq.{4),the amplitudes of the ap and ﬁ; fun-
ctions falls down rapidly in the classical allowed region under condi-
tion p’« p. Therefore, the moduluses of the db and ﬁp =» @ and the ea.(5)
is transformed into well-known first-order W.K.B. expression of wave-
function.

To establish this correspondence to seccnd-order, it is useful

to rewrite eq.(4a) using relation (lz). Thus,

o= (p'/20°e") (v (6)
and, finally,
d/=(p’g'/2p°g) sin(p) + (p'/20%) {sin’(¢ )}’ (7
If the conditions
g, = g K sin’{¢) (8}

are true, we immediately obtain the approximate expression for db:
. 2 . 2 P n2 3
dbx {p’/2p") sin (wp) - f(p Y /4pdr, (9)
which is closed to conventional W.K.B. expansion of the eigenfunction

. 2
te terms of #° order.
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From a physical point of view the surppesition (&) correspconds to
the motion of highly excited particle in the slowly varyinz potential.

vy

s : 3 T - \
mantitutively, this means that U’« 4p”, what is exactly equivalented

&

to well-know™ condition of the validity of the semiclassical approxima-
tion.

Eq.{g} justifies the assumption about the best choice

points for trial phase functions near the pctential minimum [437.
In this case p‘(RC)&Z and the first term in eq.(@) vanishes. Therefore,
the smoothness of total phase function @%(RC,E) from trial energy

E reaches a maximum.

Using the guantization rule for total quantum phase function,i.e.

«1{EC,E):H(V+1) , the semiclassical second-order guantization rule [6]
could be derive TFrom eg.{(2):
h h 2 ES
fpdr = riv+1) + [(p") /4p dr (19)
W n

Chbviously, eqs.(4) are not valid in the vicinity of the turning
points (paP) ané in the classically inaccessible regions. 4s the same
time, the conventional phase methods [7]}, which are based on the sub-
stitution: y’/y=tg{w) (i.e. a=l1l in our notations), are correct for

all integration regions. However, in this case the phase funciions ¢

b

s found to have ladder-like form in the classical allowed region ,
and their applications is apperently not so efficient.
In this end, the reasonable compromise between the two substitutions

a=! and a=p{r) are seemed to consist in the choice a:p(rm):pm:const,

where rmcorresponds to potential minimum. Then a’=@ and, introducing
the difference between ¢ _and ¢ as ¢ = ¢ + &« again, we obtain
m s8¢ m sC m
equations for =® andé 5. functions:
- pHcos®(¢ ) -(p/p )sin’ie )} (11a)
m - Tva N “m AE
R 2 2 P
g'/g. = ((p -D }/2p }sin(2¢ } {11b}
m mn T m (i

Further, recalling +that a:p{rmlzféz, where energy E ig
13 Wi

calculiataed from the potential minimum (U(rm):@). and introducing the

e

rew difference function @ = 1£:r-¢‘, which cen be considered as the
Y i1
correction to free particle motion, one obtains the simpler

expressions for e and g,
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L 2 .
o = (U/ZVEM) sin”(w, ) (i2a)
g /g, = (U/2wé:) sin(2e ) (12b}

Note, that eas.(11) and (12) in contrast +to ees.(3) and (4)
are not reguired the knowledge of the first derivative of momentun.

From e2as.{11) and (12) it is easy verify, that the amplitudes of
N and B, functions decreases monotonically as moving toward into the
classical allowed region, although more slowly than those of e and g,
obtained by rerlacment a=p(r). Therefore, the function & vanishes in
classical allowed region and the corresponding total wavefunction
v becomes close to its semiclasssical analogues. At the same time,
eas.(11) and (i2) hold true in the classical forbidden regions and
near the turning points.

In additional,the phase methods can be applied to estimate the
overlap integrals from the product of highly oscillating wavefunctions,
numerically. Obviously, the application any finite-difference scheme
is resulted to the pointwise representation of total wavefunctiions,
which is extremely unefficient here. Quite the reverse,the use of the
quasianalitical form of y (ea.{5)) vermits to present this integrals
as fV gigzcos(wi—wz)dr, where we neglect of strongly oscililating term
cos(wl+@2).Therefore,it is possible to reduce a number of oscillations
of the integrand function, especially when phase vaiues of both
wavefunctions are closed to each other, i.e. PR, .

Moreover, the evaluation of Franck-Condon type integrals may be
further simplified in the framework of the saddle-point method,which is
applied for calculation the semiclassical matrix elements {81.

For this porpose it is appropriate to represernt the total wavefunction
in the form (5).In this case, transcendenit eguation for saddle point r;é
searching takes the following form

-

»,- p,= (p,/2p)sin(2¢ ) -(p,/2p,)sin{(2¢,) {13)

and +the difference of stationary 1local phases & egual to

Ed
b {r Y+ ba{r j. Using eq.{9), it is easy ©to found the ralative errors

s5C
of matrix elements. estimated with the semiclassical wavefunciions -~

%
ws;' p’ /p and the shift in the location saddle point — &r 7 i/p.
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3.Conclusions.

1 is readily seen,thatl the relative errors of total wavefunciions
v inside thne classical allowed regions are proporticnal to p’'/p and
J/7YE , when the eqgs.(4) or {12) are applied to obtain eigenfunctions,
respectively. It allowas one to discuss those methods are the most
suitable and natural schemes for the direct integration iD
Schrodinger eguation in the regions satisfied with following conditicns
P’ p and/or U € E. In general, these conditions are met in the high-
energy limit,i.e. near and above the dissociation threshould for both
bound and continnum states. Note, that the corresponding total wave-
functions are highly cscillatory nature, so the conventicnal finite-
difference schemes are failed.

On the other hand, these methods are unefficient with compared to
finite-difference ones in the classical forbidden regions and near ihe
turning points. Obviously.,it is possible to combine this two methods
at any peint of internuclear distance by using the relationship between
the phase function and the logderivative of total wavefunction --
¢=nn+arctgiayv/y’ }.

The introduced correction functions o and £ can be employed to
control the accuracy of wavefunciions obtained under different

semiclassical approachs.
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