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THE QUANTUM AND SEMICLASSICAL PHASE FORMALISM FOR OBTAINING 

THE 1D EIGENFUNCTIONS 
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Abstract.  

The quantum phase formalism, suggested earlier ( Abarenov A . V .  anti 

S to lyarov  A.V. J.Phys.B, (1990) Zl 2419-26). f o r  t h e  s o l u t i o n  of t h e  

one-dimensional f l D )  e igenvalue problem, is a p p l i e d  f o r  e igenfunct ions  
and i ts  over lap  i n t e g r a l s  . The quantom phase and ampl i tude ' func t ions  

of t h e  o f f e r e d  method i s  found t o  concide w i t h  sericlassicel ones 
under s t a n d a r t  semiclassical c o n d i t i o n s  (p '<< p ) .  I t  made p o s s i b l e  

t o  o b t a i n  t h e  c i o s e d  form of wavefunctions and e n e r g i e s ,  which is 
equiva len t  t o  t h o s e  of t? order  W . K . B .  exponsion. The method is t h e  
most e f f i c i e n t  f o r  s t r o n g l y  o s c i l l a t i n g  e igenfunct ions ,  i . e .  in  t h e  
high-energy l i m i t .  
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212 STOLYAROV AND ABARENOV 

I. I n t r o d u c t i o n .  

Much e f f o r t  h a s  been devoted t o  searching  f o r  t h e  most 

e f f i c i e n t  and convin ien t  methods of s o l u t i o n  of one-dimensional (iD) 

aigenvalue problem. However, one can n o t  u s u a l l y  t a k e  t h e  advantages 

of t h e s e  methods f o r  so iv ing  e igenfunct ion  problem s t r a i g h t  o f f .  

Moreover, t h e  major i ty  of t h e s e  ones have s i g n i f i c a n t  drawback - 
t h e i r  accuracy i s  r a p i d l y  decreased f o r  %he highly o s c i l l a t o r y  eigen- 

func t ions ,  i . e .  as t h e  v i b r a t i o n a l  quantum number v f o r  bound states 

and energy 6: f o r  continuum states i n c r e a s e s .  

The well-kaown d i r e c t  step-by-s<ep numerical  i n t e g r a t i o n  

( s o - c a l l e d  "shooting'.) method i s  widely used f o r  botin eigenvallies. as 

e igenfunct ions  of 1D Schrodinger equat ion  . Obviously, i ts  accuracy 

is def ined  by t h e  p a r t i c u l a r  numerical  scheme a p p l i e d  f o r  i n t e g r a t i o n .  

The ord inary  o r  renormalized Numerov i:! a lgor i thm is  o f t e n  employed 

t o  i n t e g r a t e  t h e  I D  Schrodinger e q u a t i o n ,  s i n c e  t h i s  procedure i s  

e f f i c i e n t ,  accurate and numerical ly  s t a b i l i t y  for both  one-minimum 

and double-minimum molecular p o t e n t i a l s  [ Z l .  

I t  is  easy t o  show t h a t  f o r  Numerov a lgor i thm t h e  r e l a t i v e  

e r r o r  'rt of wavefunction i n s i d e  t h e  c1assics:ly allowed region a t  high 

v grows as a t h i r d  power l e v e l  energy E [ 3 3 .  Moreover, t h e  va lue  I) 

grows as E""+' i n s i d e  t h e  classicaly allowed rep ions  i n  any 

f in i+ ,e -d i f fe rence  scheme of order  n .  This  dependence seem t o  be not  

a g p r o p r i a t e  fo r  states with h ighly  o s c i l l a t o r y  e igenfunct ions .  

T o  overcome t h i s  problem, w e  appiy  t h e  phase formalism, suggested 

earlier f o r  search ing  eigefivalues [ 4 j ,  t o  d i r e c t  numerical  i n t e g r a t i o n  

1C Schrodinger equat ion .  

2. Modified phase method for 1D e i g e n f u n c t i o n s  

and i ts  semiclassical l i m i t .  

L e t  u s  rewrite t h e  :D Schrodinger  equat ion  u s i a g  a new v a r i a b l e s  

y = g sin(.p; (la; 
y '  = a g cos(,,u), (Ib) 

where a - is some fanc t ion  and prime indicaxes  t h e  f i r s t - o r d e r  d i f f e -  
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QUANTUM AND SEMICLASSICAL PHASE FORMALISM 

r e n t i o n  i n  r a d i a l  c o o r d i n a t e  r .  So w e  o b t a i n  d i f f e r e n t i a l  e q a a t i o n s  

for phase P and  a a p p l i t u i s  g : 

273 

( 2 a j  

g ‘ / g  = c o s  C a - ( S - U ) / a } s i n ( ~ ) - ~ a ’ / a ) c o s ( o ;  , ( 2 b )  1 P’ = a-sin{(a- (E-U) / a ) s i n ( p )  -(a’ /a :cos( s: 

t 
where both ene rgy  E and n o t e n t i a l  Uir) are expres sed  i n  Astor. u n i t .  

Now, a(r; is supposed t o  b e  e q u a i  t o  classical moaen tm p ( r j  i n  t h e  

c lass ical  a c c e s s i a b l e  r e g i o n :  a = p ( r ) = G l  . Then. e q s .  ( 2 )  f o r  

phase  a and a m p l i t u d e  g t a k e  the f o l l o w i n g  f o r m :  

P; = P + (p’/Zp: s i n ( 2 p  1 (3a)  

g p p =  - ( P ’ / 2 P ) (  l+COS(2PPP) ) (3b: 

F u r t h e r ,  upon t h e  s u b s t i t u t i o n  p pee+ d, and g, =gsEe-pp I 

where pSc=Spdr+p, and g s c = C / - C a r e  f i r s t - o r d e r  semiclassical 

sad ampl i tude .  r e s p e c t i v e l y  [S]. w e  arrive the f o l l o w i n g  e q u a t i o n s  for 

phase  

t h e  quan tun  c a r r e c t i o n  f u n c t i o f i s  &- and B . 
P’ 

d ‘ =  (p ’ /Zp)  s i n ( 2 v p )  

pD= (p ‘ /2p>  COS(2Pn) 
So the t o t a l  wavefunct ion j r  is: 

y =c/&--e+p 

As it is  a p p e a r s  f r o m  e q . ( r l ) , t h e  

c t i o n s  f a l l s  down r a p i d l y  i n  tine 

sin{ s p d r  t ci + qo ( 5 )  

a m p l i t u d e s  of the u and j3 fun-  

ciassiczi e l lowed  r e g i o n  unde r  condi-  

t i o n  p’<< p .  There fo re ,Lhe  rnoduluses of  t h e  d and B + 0 am? t h e  ea_.(5; 

is t r ans fo rmed  i n t o  well-known f i r s t - o r d e r  W.K.E. e x p r e s s i c n  of  wave- 

f u n c t i o n .  

T o  e s t a b l i s h  t h i s  c a r r e s p o n d e a c e  t o  seccnd-order .  it is u s e f u l  

t o  rewrite ea_ . (4a )  u s i n g  r e l a t i o n  ( l a ) .  Thus,  

c$= (p’/2p2pZ) ! y Z ) .  ( 6 )  
and ,  f i n a l l y ,  

d i = ( p ’ g ’ / 2 p 2 g )  sin2(cpp) t (p’ /2pz)  i s i n z ( p  ) j‘ ( 7 )  
I f  the c o n d i t i o n s  

gb zx g,,“ s i n ’  :pp) ( 8 )  
sre t r u e ,  we immediately o b t a i n  t h e  approx ima te  e x p r e s c i s n  for d . 

P‘ 

d,” :p’/2p2) s i n 2 ( p p )  - s(p’ )2/4p3dr,  ( 9 )  
which i s  c l o s e d  t o  c o n v e n t i o n a l  W.K.B. axpans ion  o f  the e i g e n f u n c t i o n  

t,o t e r m s  of h2 o r d e r  
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274 STOLYAROV AND ABARENOV 

From a p h y s i c a i  p o i n t  of  view t h e  suppos i t . i cn  ( 8 ;  c o r r e s p o n d s  ZG 

t h e  motion of h i g k l y  e x c i t e d  p a r t i c l e  i?. t h e  s l o w l y  v a r y i n g  p o t e a t i a i .  

Qu&>-Li%utively,  t h i s  means t h a t  4p3,  whaz is e x a c t l y  e q u i v a l e n t e d  

%o weli-knowi'i condiLion of t h e  v a l i d i t y  of  t h e  semiclassical app2cxim2- 

L '  czon.  

Eq.(9) j c s t i f i e s  t h e  a s s a n p t i o n  aboct t h e  hsjt c h o i c e  maccbing 

p o i n t s  f o r  t r i a l  phese  f u n c t i o n s  n e a r  r h e  p o t e z t i a l  minimum ; 4 ] .  

Iil t h i s  case g'(Rc)%Z and the  f i r s t  t e r m  i n  e q . ( 9 )  v a n i s h e s .  T h e r e f o r e .  

t h e  smoothness of to ta l  phase f u n c t i o n  pt(Xc,E) from t r i a l  eilergy 

E r e a c h e s  a maximum. 

'Jsing t h e  q u a n t i z a t i s n  r u l e  f o r  t o t a l  quantum phase  f u n c r i o a , i . e .  

p , ! E c , E ) = n ( v ~ l )  , t h e  semiclassical second-o rde r  q u a n t i z a t i o ? .  r a l e  163 

c o u l d  be d e r i v e  f r o m  eq. ( 9 )  : 

Cb"' i o , s ly ,  .. e q s . ( 4 j  are n- ; t  v a l i d  i n  t h e  v i c i n i t y  of t h e  turnlng 

p o i n t s  ( p a )  and i n  t h e  c la s s i ca l iy  i n a c c e s s i j i e  r e g i o n s .  A 5  t h e  sa?e 

t ime,  t h e  c o n v e n t i o n e l  phase  methods 1 7 3 ,  which are based on t h e  sab-  

s t i t u t i o n :  y ' /y=tg:@! ( i . e .  a - i  i n  ou r  n o t a t i o n s ) ,  are c o r r e c t  f o r  

a l i  i n t e g r a t i o n  r e g i o n s .  However, i n  t h i s  case t h e  pnase  f u n c t i o n s  PI 

i s  found t o  ha-ve l a d d e r - l i k e  form i n  t h e  c lass ical  a l lowed  r e g i o n  , 

and t h e i r  a p p l i c a r i o n s  is a p p e r a n t l y  n o t  55 e f f i c i e n t .  

i n  t h i s  end,  t h e  r e a s o n a b l e  compromise between t h e  t i io s u b s t i t u t l o n r  

--, ens . a=p(r) are  seemed t o  c o n s i s t  i n  t h e  c h o i c e  a=p(rw):pm:const, 

where r c o r r e s p o n d s  t o  p o t e n t i e l  minimum. Then a'=0 a n d ,  i n t r o d u c i n g  

the d i f f e r e c c e  between *sc 2s pm: oSc+ urn a g a i n .  w e  o b t a i n  

e q u a t i o n s  f o r  4 and g,,: f u n c t i o n s :  

ix'=<o l i l  - - lil - p > l c o s z (  P,~; - p/p,) sin': wm! ? 

g,;,/p:,,= ( (P:, - p 2 ) / 2 p , ~ ~ s i r . i 2 6 , , , !  (11s: 

(116) 

Furf,har,  r e c a i l i n g  that  a=I;ir )=K, &ere Energy E,", is m 

c z l c u i a t a e d  from t h e  p o t e n t i e l  minimum (U(rm>=O). 

i l e w  d i f f e r e n c e  f u n c t i o n  0," = -Kr-yOm, x h i c h  can b e  c o n s i d e r e d  a5 t h e  

c o r r e c t i o n  t o  f r e e  p a r t i c l e  motion.  one o b t a i n s  t h e  s imple r  

e x ? r e s s i o n s  f o r  (1 and g : 

and i n t r o d u c i n g  the 
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c7’ = (u/2-&,,,) s i n Z ( P r J  (i2a: 

QUANTUM AND SEMICLASSICAL PHASE FORMALISM 

r 

g;,/g,,,= (u /~K) sin(20u ,n )  < 12b: 
NoZe, t ha t  ea_s.!’_l) and ( 1 2 )  i n  c o n t r a s t  t o  e ~ s . ( 3 )  and ( 4 )  

are c o t  r e q u i r e d  the knowledge of t he  f i r s t  d e r i v a t i v e  of momentun. 

F ro3  ea_s.( l l ;  and (12) it is easy  v e r i f y ,  t h a t  t h e  ampl i t i l des  of 

a 

classical  a l lowed  r e g i o n ,  

o b t a i n e d  by r ep lacmen t  a = p ( r ) .  T h e r e f o r e ,  t h e  f u n c t i o n  aln v a n i s h e s  i n  

classical  a l lowed  r e g i o n  and the  co r re spond ing  t o t a l  wavefunct ion 

y becomes c l o s e  t o  its s e n i c l a s s s i c a l  a n a l o g u e s .  A t  t h e  same t i m e ,  

e q s . ( l l )  and ( i 2 )  h s l d  t r u e  i n  the classical  fo rb idden  r e g i o n s  end 

n e a r  t h e  t u r n i n g  p o i n t s .  

and gm f u n c t i o n s  decrel ;ses  mono ton ica l ly  a s  moving towsrd i n t o  the 

a l t h o u g h  more s l w t l : ~  t h a n  t h o s e  of  G,,, and g”, 

In a d d i t i o n a 1 , t h e  phase  methods can be a p p l i e d  t o  estimate t h e  

o v e r l a p  i n t e g r a l s  from t h e  p r o d u c t  o f  h i g h l y  o s c i l l a t i n g  wavefunc t ions ,  

n u m e r i c a l l y .  Obviously,  t h e  a p p l i c a t i o n  any  f i n i t e - d i f f e r e n c e  scheme 

i s  r e s u l t e d  t o  t h e  p o i n t w i s e  r e p r e s e n t a t i o n  of t o t a l  wavefunct ions,  

which is  ex t r eme ly  u n e f f i c i e n t  h e r e .  Q u i t e  t h e  r e v e r s e , t h e  u s e  of t‘ne 

q u a s i a n a l i t i c a l  form of  y ( e q . ( 5 ) )  p e r m i t s  t o  p r e s e n t  t h i s  i n t e g r a l s  

as SV gzgisos(qni-pz)dr,  where w e  n e g l e c t  of  s t r o n g l y  o s c i l l a t i n g  term 

c 0 5 ! 9 ~ + 8 ~ ) . T h e r e f o r e , i t  i s  p o s s i b l e  t o  r e d u c e  a n u m h e r  of o s c i l l a t i o n s  

of t h e  i n t e g r a n d  f u n c t i o n ,  e s p e c i a l l y  when phase v a i u e s  of  bo th  

wevefunc t ions  are c l o s e d  t o  each  o t h e r ,  i . e .  ptW2. 

Woreover, t h e  e v a l u a t i o n  of Franck-Condon t y p e  i r . t e g r a l s  may b e  

eirtfier s i m p l i f i e d  i n  t h e  framexork c?f t h e  s a d d l e - p o i n t  method,whicn i s  

a p p l i e d  f o r  c a l c g l a t i o n  t h e  semiclassical  m a t r i x  e l emen t s  i5 1. 

For t h i s  r o r p o s e  it is a p p r o p r i a t e  t o  r e p r e s e o t  the t o t a l  wavefunct ion 

i n  t h e  form ( 5 ) . I n  t h i s  c a s e ,  t r a n s c e n d e n t  e q u a t i o n  f o r  saddle p o i n t  ri 

sea rch inE  t a k e s  t h e  f o l l o w i n g  form 

P,- pi= (P; /2pi 1 s i n (  2 8 ,  ) - ( D;/2pZ! s i n  ( 2pZ ) (131 

and t h e  d i f f e r e n c e  o f  s t a t i o n a r y  local  phases  E e q u a l  t o  

w (r*:t cfi(r*j. Using e q . < 9 > ,  it i s  easy  to foilnd t h e  r a l a t i v e  e r r o r s  

of m a t r i x  e l e m e n t s .  e s t i m a t e d  w i t h  the semiclassical wavefunct ions - -  

‘ii - p ‘ / p  and t h e  s h i f t  i n  t h e  l o c a t i o n  s a d d l e  p o i n t  - crAc I /p .  

5c 

9c 
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2 76 STOLYAROV AND ABARENOV 

3. Conclusions. 

It  i s  r e a d i l y  s e e n , t b a t  the r c i a t i v e  e r r o r s  of t o t a l  savefunct ions  

y i n s i d e  the classical ailowed reg ions  ace p r o p o r t i o n a l  to p'/p and 

U I - 4 ,  when t h e  eqs.(4) cr (12) are &?plied t o  obta in  e igenfunct ions ,  

r e s p e c t i v e l y .  I t  a l iowes  one t o  d i s c u s s  t h o s e  methods a r e  t h e  most 

s u i t a b l e  2nd n a t u r a i  schemes for the  d i r e c t  i n t e g r a t i o n  19 

Schrodinger equat ion in  t h e  reg ions  s a t i s f i e d  with fol lowing condi t ions  

p'<< p azd/or U c< E. i n  genera:. t h e s e  c o n d i t i o n s  are m e t  i n  t h e  high.  

energy I i m i t , i . e .  sear and above t h s  d i s s o c i a t i o n  threshoi;:d f o r  bo th  

Souid and continuum states. Note, t h a t  t h e  corresponding tot.a: wave- 

f u n c t i o n s  are highly G s c i i i a t o r y  n a t u r e ,  so t h e  convent iona l  f i n i t e -  

d i f f e r e n c e  schemes zre f a i l e d .  

On the o t h e r  hand ' these methods are u n e f f i c i e n t  with cornsared t o  

f i n i t e - d i f f e r e n c e  ones ir; t h e  classical forbidden r e g i o n s  and nezr  t i e  

turn ing  p o i n t s .  0 b v i o u s l y . f t  is p o s s i b l e  t o  coiiihine t h i s  t w o  methods 

a t  any p o i n t  of i n t e r n u c l e a r  d i s t a n c e  by a s i n g  t h e  r e l a t i o n s h i p  between 

t h e  phase func t ion  and t h e  l o g d e r i v a t i v e  of t o t a l  wavefunction - -  

@=nn+arctglay/y' I .  

The introduced c o r r e c t i o n  func t ions  d and f l  can be employed to 

control t h e  accuracy of wavefunctions obtained uniier d i f f e r a n t  

semiclassical approachs.  
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